PENERAPAN METODE CONVOLUTIONAL NEURAL NETWORK DALAM PLUGIN FIGMA UNTUK PEMERIKSAAN KESELARASAN KOMPONEN DESAIN DI PT BUKIT MAKMUR MANDIRI UTAMA

Fauzan Kurnia Rahman, . (2025) PENERAPAN METODE CONVOLUTIONAL NEURAL NETWORK DALAM PLUGIN FIGMA UNTUK PEMERIKSAAN KESELARASAN KOMPONEN DESAIN DI PT BUKIT MAKMUR MANDIRI UTAMA. Skripsi thesis, Universitas Pembangunan Nasional Veteran Jakarta.

[img] Text
ABSTRAK.pdf

Download (242kB)
[img] Text
AWAL.pdf

Download (590kB)
[img] Text
BAB 1.pdf
Restricted to Repository UPNVJ Only

Download (320kB)
[img] Text
BAB 2.pdf
Restricted to Repository UPNVJ Only

Download (801kB)
[img] Text
BAB 3.pdf
Restricted to Repository UPNVJ Only

Download (549kB)
[img] Text
BAB 4.pdf
Restricted to Repository UPNVJ Only

Download (2MB)
[img] Text
BAB 5.pdf

Download (284kB)
[img] Text
DAFTAR PUSTAKA.pdf

Download (252kB)
[img] Text
DAFTAR RIWAYAT HIDUP.pdf
Restricted to Repository UPNVJ Only

Download (114kB)
[img] Text
LAMPIRAN.pdf
Restricted to Repository UPNVJ Only

Download (919kB)
[img] Text
HASIL PLAGIARISME.pdf
Restricted to Repository staff only

Download (17MB)
[img] Text
ARTIKEL KI.pdf
Restricted to Repository staff only

Download (693kB)

Abstract

The process of verifying design component alignment in the PT Bukit Makmur Mandiri Utama Design System is still performed manually, resulting in time-consuming workflows and error-prone outcomes. This study aims to develop an automated Figma plugin based on a Convolutional Neural Network (CNN) to detect mismatched components and recommend replacements from the master Design System file. Development followed the Waterfall model, encompassing requirements identification, design, and implementation using Vue and TensorFlow.js. The dataset comprises 3,630 images across 121 component classes, split into 70% training, 15% validation, and 15% testing subsets, with data augmentation applied to prevent overfitting. The CNN model processes 224 × 224-pixel inputs and produces class predictions through convolutional, pooling, and fully connected layers. Initial evaluation showed an average validation accuracy above 0.88 and a top F1-score of 0.92 across 5 randomly selected classes. Functional testing via Black-Box Testing demonstrated that the plugin runs smoothly within Figma without any significant performance issues. A/B Testing further indicated a 46 % reduction in design checking time compared to manual methods. Additionally, User Acceptance Testing recorded a 96,44% user acceptance rate. These results indicate that the developed plugin significantly enhances the efficiency and accuracy of design component validation.

Item Type: Thesis (Skripsi)
Additional Information: [No.Panggil: 2110511072] [Pembimbing 1: Musthofa Galih Pradana] [Pembimbing 2: Muhammad Panji Muslim] [Penguji 1: Neny Rosmawarni] [Penguji 2: I Wayan Rangga Pinastawa]
Uncontrolled Keywords: Figma Plugin, Design System, Design Components, Convolutional Neural Network
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Q Science > QA Mathematics > QA76 Computer software
Divisions: Fakultas Ilmu Komputer > Program Studi Informatika (S1)
Depositing User: FAUZAN KURNIA RAHMAN
Date Deposited: 06 Aug 2025 06:49
Last Modified: 06 Aug 2025 06:49
URI: http://repository.upnvj.ac.id/id/eprint/37544

Actions (login required)

View Item View Item