IMPLEMENTASI ARSITEKTUR EFFICIENTNET-B0 CNN UNTUK KLASIFIKASI PENYAKIT MATA BERDASARKAN CITRA FUNDUS: NORMAL, KATARAK, DIABETIC RETINOPATHY, DAN GLAUKOMA.

Annisa Fitriatuzzahra, . (2024) IMPLEMENTASI ARSITEKTUR EFFICIENTNET-B0 CNN UNTUK KLASIFIKASI PENYAKIT MATA BERDASARKAN CITRA FUNDUS: NORMAL, KATARAK, DIABETIC RETINOPATHY, DAN GLAUKOMA. Skripsi thesis, Universitas Pembangunan Nasional Veteran Jakarta.

[img] Text
ABSTRAK.pdf

Download (10kB)
[img] Text
AWAL.pdf

Download (617kB)
[img] Text
BAB 1.pdf
Restricted to Repository UPNVJ Only

Download (86kB)
[img] Text
BAB 2.pdf
Restricted to Repository UPNVJ Only

Download (670kB)
[img] Text
BAB 3.pdf
Restricted to Repository UPNVJ Only

Download (132kB)
[img] Text
BAB 4.pdf
Restricted to Repository UPNVJ Only

Download (703kB)
[img] Text
BAB 5.pdf

Download (10kB)
[img] Text
DAFTAR PUSTAKA.pdf

Download (149kB)
[img] Text
RIWAYAT HIDUP.pdf
Restricted to Repository UPNVJ Only

Download (57kB)
[img] Text
LAMPIRAN.pdf
Restricted to Repository UPNVJ Only

Download (2MB)
[img] Text
HASIL PLAGIARISME.pdf
Restricted to Repository staff only

Download (9MB)
[img] Text
ARTIKEL KI.pdf
Restricted to Repository staff only

Download (418kB)

Abstract

Eye is one of the most vital organs for humans. Humans can obtain 80% of information solely through vision. Loss of vision has various causes that require comprehensive prevention, treatment, and care, making early identification and diagnosis of eye diseases crucial. In detecting eye diseases, experts and doctors use various methods, one of which is fundoscopy. This research proposes the development of a model for classifying eye diseases using the CNN method with EfficientNet-B0 Architecture. The model is trained using a dataset containing 4217 fundus eye images divided into 4 classes: Normal, Cataract, Diabetic Retinopathy, and Glaucoma. Subsequently, the dataset is split into 70% training data, 15% test data, and 15% validation data. The performance results obtained include an accuracy of 0.86 or 86%, precision of 0.88 or 88%, recall of 0.87 or 87%, and an f1-score of 0.87 or 87%.

Item Type: Thesis (Skripsi)
Additional Information: [No.Panggil: 2010511107] [Pembimbing 1: Neny Rosmawarni] [Pembimbing 2: Hamonangan Kinantan Prabu] [Penguji 1: Indra Permana Solihin] [Penguji 2: Novi Trisman Hadi]
Uncontrolled Keywords: EfficientNet-B0, Cataract, Diabetic Retinopathy, Glaucoma.
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Divisions: Fakultas Ilmu Komputer > Program Studi Informatika (S1)
Depositing User: Annisa Fitriatuzzahra
Date Deposited: 30 Jul 2024 05:27
Last Modified: 03 Sep 2024 07:25
URI: http://repository.upnvj.ac.id/id/eprint/31602

Actions (login required)

View Item View Item