SISTEM INFORMASI PENJUALAN MELALUI IDENTIFIKASI POLA BELANJA KONSUMEN PADA PERUSAHAAN RETAIL MENGGUNAKAN ALGORITMA APRIORI

Razzi Permana Maolana, . (2025) SISTEM INFORMASI PENJUALAN MELALUI IDENTIFIKASI POLA BELANJA KONSUMEN PADA PERUSAHAAN RETAIL MENGGUNAKAN ALGORITMA APRIORI. Skripsi thesis, Universitas Pembangunan Nasional Veteran Jakarta.

[img] Text
ABSTRAK.pdf

Download (151kB)
[img] Text
AWAL.pdf

Download (1MB)
[img] Text
BAB I.pdf
Restricted to Repository UPNVJ Only

Download (277kB)
[img] Text
BAB II.pdf
Restricted to Repository UPNVJ Only

Download (713kB)
[img] Text
BAB III.pdf
Restricted to Repository UPNVJ Only

Download (297kB)
[img] Text
BAB IV.pdf
Restricted to Repository UPNVJ Only

Download (10MB)
[img] Text
BAB V.pdf

Download (199kB)
[img] Text
DAFTAR PUSTAKA.pdf

Download (203kB)
[img] Text
RIWAYAT HIDUP.pdf
Restricted to Repository UPNVJ Only

Download (138kB)
[img] Text
LAMPIRAN.pdf
Restricted to Repository UPNVJ Only

Download (812kB)
[img] Text
HASIL PLAGIARISME.pdf
Restricted to Repository staff only

Download (14MB)
[img] Text
ARTIKEL KI.pdf
Restricted to Repository staff only

Download (1MB)

Abstract

Primkop Pullahta Hankam Pusdatin Kemhan still records sales transactions manually and has not utilized the transaction data for decision-making. This increases the risk of errors, complicates data retrieval, and overlooks consumer purchasing patterns. This study aims to develop a web-based sales information system that records transactions digitally and applies the Apriori algorithm to generate product recommendations. The system is developed using the waterfall method, which includes requirements analysis, system design, implementation, testing, and deployment. The Apriori algorithm is applied in the data mining process to identify association rules based on a minimum support of 0.003, confidence above 0.3, and lift greater than 1. As a result, nine association rules were generated and implemented in the product recommendation feature. The system can record sales, display transaction history, manage product data, monitor sales through a dashboard, and provide product recommendations. Testing using the black box method shows that all system functions run as expected.

Item Type: Thesis (Skripsi)
Additional Information: [No.Panggil: 2110512124] [Pembimbing 1: Iin Ernawati] [Pembimbing 2: M. Oktaviano] [Penguji 1: Catur Nugrahaeni Puspita Dewi] [Penguji 2: Bambang Tri Wahyono]
Uncontrolled Keywords: Sales Information System, Apriori Algorithm, Data Mining, Product Recommendation, Waterfall
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Q Science > QA Mathematics > QA76 Computer software
T Technology > T Technology (General)
Divisions: Fakultas Ilmu Komputer > Program Studi Informatika (S1)
Depositing User: RAZZI PERMANA MAOLANA
Date Deposited: 04 Sep 2025 04:13
Last Modified: 04 Sep 2025 04:13
URI: http://repository.upnvj.ac.id/id/eprint/37336

Actions (login required)

View Item View Item