KLASIFIKASI CITRA ABJAD BAHASA ISYARAT INDONESIA MENGGUNAKAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK

Muhammad Fadillah, . (2024) KLASIFIKASI CITRA ABJAD BAHASA ISYARAT INDONESIA MENGGUNAKAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK. Skripsi thesis, Universitas Pembangunan Nasional Veteran Jakarta.

[img] Text
ABSTRAK.pdf

Download (135kB)
[img] Text
AWAL.pdf

Download (2MB)
[img] Text
BAB 1.pdf
Restricted to Repository UPNVJ Only

Download (22kB)
[img] Text
BAB 2.pdf
Restricted to Repository UPNVJ Only

Download (654kB)
[img] Text
BAB 3.pdf
Restricted to Repository UPNVJ Only

Download (61kB)
[img] Text
BAB 4.pdf
Restricted to Repository UPNVJ Only

Download (1MB)
[img] Text
BAB 5.pdf

Download (76kB)
[img] Text
DAFTAR PUSTAKA.pdf

Download (14kB)
[img] Text
RIWAYAT HIDUP.pdf
Restricted to Repository UPNVJ Only

Download (13kB)
[img] Text
LAMPIRAN.pdf
Restricted to Repository UPNVJ Only

Download (2MB)
[img] Text
HASIL PLAGIARISME.pdf
Restricted to Repository staff only

Download (191kB)
[img] Text
ARTIKEL KI.pdf
Restricted to Repository staff only

Download (1MB)

Abstract

This research proposes the use of a convolutional neural network (CNN) model to classify images of the Indonesian sign language alphabet. The dataset consists of 26 classes, each representing a letter from the Indonesian sign language alphabet. The model is trained on a dataset containing 218 images and evaluated on a test dataset of 63 images. The results show that the model achieves an accuracy of 95.24% on the test set. While the model demonstrates high accuracy for most classes, it encounters difficulties in recognizing the ‘O’, ‘Q’, and ‘V’ classes, resulting in a low recall and f1-score for these specific classes. For future work, further evaluation of the model is recommended to address challenges in improving performance, particularly for these classes that hard to recognize.

Item Type: Thesis (Skripsi)
Additional Information: [No.Panggil: 1810511064] [Pembimbing: Indra Permana Solihin] [Penguji 1: Iin Ernawati] [Penguji 2: Muhammad Panji Muslim]
Uncontrolled Keywords: Indonesian Sign Language, Image Classification, CNN, Alphabet Recognition
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Q Science > QA Mathematics > QA76 Computer software
Divisions: Fakultas Ilmu Komputer > Program Studi Informatika (S1)
Depositing User: MUHAMMAD FADILLAH
Date Deposited: 05 Sep 2024 03:54
Last Modified: 05 Sep 2024 03:54
URI: http://repository.upnvj.ac.id/id/eprint/31666

Actions (login required)

View Item View Item