RANCANG BANGUN APLIKASI ANDROID KLASIFIKASI JENIS KAIN KATUN MENGGUNAKAN METODE WATERFALL DAN RESNET-50

Fajar Rizki Ramadhan, . (2025) RANCANG BANGUN APLIKASI ANDROID KLASIFIKASI JENIS KAIN KATUN MENGGUNAKAN METODE WATERFALL DAN RESNET-50. Skripsi thesis, Universitas Pembangunan Nasional Veteran Jakarta.

[img] Text
ABSTRAK.pdf

Download (221kB)
[img] Text
AWAL.pdf

Download (729kB)
[img] Text
BAB 1.pdf
Restricted to Repository UPNVJ Only

Download (337kB)
[img] Text
BAB 2.pdf
Restricted to Registered users only

Download (947kB)
[img] Text
BAB 3.pdf
Restricted to Repository UPNVJ Only

Download (661kB)
[img] Text
BAB 4.pdf
Restricted to Repository UPNVJ Only

Download (2MB)
[img] Text
BAB 5.pdf

Download (267kB)
[img] Text
DAFTAR PUSTAKA.pdf

Download (235kB)
[img] Text
RIWAYAT HIDUP.pdf
Restricted to Repository UPNVJ Only

Download (195kB)
[img] Text
LAMPIRAN.pdf
Restricted to Repository UPNVJ Only

Download (1MB)
[img] Text
HASIL PLAGIARISME.pdf
Restricted to Repository staff only

Download (13MB)
[img] Text
ARTIKEL KI.pdf
Restricted to Repository staff only

Download (910kB)

Abstract

This research developed an Android application called Klafka for automatically classifying five types of cotton-based fabrics: Combed, TC, CVC, Cotton Stretch, and Polyester. The system uses a ResNet-50 convolutional neural network model converted to TensorFlow Lite for offline inference on mobile devices. Fabric images were collected using a mobile microscope to capture texture details and processed through a TensorFlow-based pipeline. The application was developed using the Waterfall methodology and evaluated through confusion matrix metrics and User Acceptance Testing (UAT) involving 18 participants. The model achieved 97% accuracy with high precision, recall, and f1-score across all classes. UAT results showed strong user satisfaction in terms of ease of use, speed, and reliability. This application demonstrates practical potential for mobile-based fabric classification using deep learning.

Item Type: Thesis (Skripsi)
Additional Information: [No.Panggil: 2110511029] [Pembimbing: Ridwan Raafi'udin] [Penguji 1: Ika Nurlaili Isnainiyah] [Penguji 2: Radinal Setyadinsa]
Uncontrolled Keywords: Fabric classification, Deep Learning, ResNet-50, TensorFlow Lite, Android, User Acceptance Testing
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Q Science > QA Mathematics > QA76 Computer software
Divisions: Fakultas Ilmu Komputer > Program Studi Informatika (S1)
Depositing User: FAJAR RIZKI RAMADHAN
Date Deposited: 06 Aug 2025 07:23
Last Modified: 06 Aug 2025 07:23
URI: http://repository.upnvj.ac.id/id/eprint/37469

Actions (login required)

View Item View Item