BAB II

TINJAUAN PUSTAKA

2.1. Literature Review

Tabel 2.1. Penelitian Terdahulu

No.	Penulis dan Tahun	Judul	Metode	Hasil
1.	(Lia Hananto	Analysis of the Best	AHP	Urutan pentingnya
	et al., 2021)	Employee Selection		kriteria, yaitu tingkat
		Decision Support		disiplin (0.5584),
		System Using		tanggung jawab
		Analytical Hierarchy		(0.3196), dan inovasi
		Process (AHP)		(0.1220)
4.	(Ariyanto,	Decision Support	SAW	Kriterianya antara lain
	2023)	System For Selecting		absensi, kinerja, disiplin
		The Best Employee		penugasan, dan approval
		at PT Bank Digital		
		BCA Using Saw		
		Method		
5.	(Jaya &	Sistem Pendukung	SAW	Proses perhitungannya
	Handoko,	Keputusan Penilaian		melibatkan nilai bobot
	2023)	Karyawan Terbaik		untuk setiap kriteria,
		Menggunakan		yang kemudian akan
		Metode SAW (Studi		dinormalisasi untuk
		Kasus: PT. Sango		menghasilkan
		Ceramics Indonesia)		perangkingan yang
				optimal. Kriteria yang
				dievaluasi mencakup
				kerjasama, kedisiplinan,
				komunikasi, keaktifan,
				dan tanggung jawab.
6.	(Retnasari et	A Determination of	SAW	Metode SAW membantu
	al., 2019)	The Best Employees		dalam memilih
		using Simple		karyawan terbaik dengan

[www.upnvj.ac.id - www.library.upnvj.ac.id - www.repository.upnvj.ac.id]

Additiv	ve Weighting	hasil yang akurat.
(SAW)	Method	Penilaian atribut yang
		digunakan meliputi
		pendidikan, pengalaman,
		keahlian, kolaborasi,
		kualitas kerja, dan
		disiplin. Metode SAW
		ini relatif sederhana dan
		dapat memberikan
		keputusan yang tepat
		untuk karyawan yang
		memiliki kinerja terbaik.

Berdasarkan penelitian-penelitian terdahulu tersebut terdapat perbedaan antara penelitian ini adalah pada objek yang diteliti dan penentuan kriteria yang digunakan berbeda dengan kriteria pada penelitian ini. Persamaan dengan penelitian ini dengan penelitian lainnya adalah membantu dalam penentuan karyawan terbaik secara objektif dan terukur.

Perbedaan antara metode AHP dan SAW adalah metode SAW menggunakan penjumlahan terbobot dari rating kinerja pada setiap alternatif dari semua atribut, sedangkan metode AHP menggunakan analisis hierarki untuk menentukan prioritas kriteria dan alternatif.

2.2. Sistem Informasi

Menurut (Irviani et al., 2017), sistem informasi merupakan sistem yang dapat menyimpan, mengambil, mengubah, mengolah, dan mengkomunikasikan informasi bagi semua anggota organisasi kapanpun dibutuhkan. Adapun dalam suatu sistem informasi terdiri dari komponen-komponen seperti perangkat keras, perangkat lunak, basis data, orang, prosedur, serta jaringan komputer dan komunikasi data.

2.2.1. Perancangan Sistem Informasi

[www.upnvj.ac.id - www.library.upnvj.ac.id - www.repository.upnvj.ac.id]

Menurut (Ahmad et al., 2022a), dalam proses perancangan sebuah sistem, setiap komponen yang terlibat akan berinteraksi satu sama lain untuk menciptakan sistem yang berfungsi dengan baik. Setiap tahapannya harus mendifinisikan kebutuhan fungsional dari sistem yang akan dibuat.

Menurut (Muharni, 2021), perancangan sistem informasi melibatkan proses dekomposisi suatu topik dan penyelidikan situasi aktual dalam suatu organisasi atau entitas, dengan tujuan mengidentifikasi komponen dan unsurunsur kunci yang diperlukan untuk membangun sistem informasi. Dalam menganalisis perancangan sistem informasi, dilakukan survei proyek sistem untuk mengumpulkan data awal yang nantinya akan dianalisis menjadi informasi rencana. Selain itu, juga dilakukan analisis terhadap sistem informasi yang sedang berjalan untuk mencari indikasi dan potensi subsistem yang mungkin diperlukan.

2.2.2. Unified Modelling Language (UML)

Menurut (Munawar, 2018), UML adalah bahasa pemodelan visual yang digunakan sebagau acuan dalam pengembangan sistem berorientasi objek untuk membuat cetak biru perangkat lunak (arsitektur) dan dilengkap dengan mekanisme yang efektif untuk berbagi dan mengkomunikasikan rancangan. Penggunaan UML secara iteratif dalam analisis dan desain memungkinkan pemenuhan persyaratan sistem dengan desain berorientasi objek dan model basis data relasional (Cavique et al., 2022). Terdapat banyak jenis UML yang memiliki pemanfaatan yang berbeda-beda untuk menjelaskan sistem, antara lain use case diagram, activity diagram, sequence diagram, class diagram, dan lain-lain.

Penjelasan masing-masing diagram akan dijelaskan sebagai berikut seperti yang dijelaskan oleh (Dasril Aldo & Nursaka Putra, 2020) beserta dengan simbol-simbolnya.

a) Use case diagram

Diagram ini adalah representasi model untuk perilaku atau interaksi antara aktor dan sistem informasi yang akan dikembangkan. Diagram ini bertujuan untuk menggambarkan secara berurutan aktivitas-aktivitas dalam sistem, mengidentifikasi aktor-aktor yang terlibat dalam menggunakan sistem, serta mendeskripsikan fungsifungsi yang dapat dilakukan oleh sistem.

7

Tabel 2.2. Simbol Use Case Diagram

Simbol	Keterangan
	Memberikan gambaran visual
Q	tentang entitas atau elemen yang
\perp	terlibat dalam menggunakan atau
	berinteraksi dengan fitur atau
Aktor	fungsionalitas tertentu yang
	dijelaskan dalam use case
	Gambaran visual tentang skenario
	atau fungsionalitas tertentu yang
	melibatkan keterlibatan antara
Use case	sistem dan aktor
	Menciptakan gambaran visual
	tentang bagaimana aktor terlibat
	atau terhubung dengan
Association	fungsionalitas yang dijelaskan
	dalam suatu use case
	Memberikan gambaran tentang
	bagaimana seorang aktor dapat
	memiliki peran khusus yang
Generalisasi	memungkinkannya berpartisipasi
	dalam suatu use case
< <include>></include>	Menandakan bahwa suatu use case
,	secara penuh mencakup
Include	fungsionalitas dari use case lain
	Menandakan bahwa suatu use case
< <extend>></extend>	menyediakan fungsionalitas
Extend	tambahan untuk use case utama jika
	kondisi tertentu terpenuhi

b) Activity diagram

Diagram aktivitas (activity diagram) adalah representasi model visual yang mengilustrasikan alur kerja suatu sistem. Diagram ini digunakan untuk menganalisis diagram use case dengan tujuan memahami aktivitas yang terlibat dari pihak yang terlibat (aktor).

Tabel 2.3. Simbol Activity Diagram

Simbol	Keterangan
	Sebagai titik awal yang menandai
	inisiasi dari diagram aktivitas, di mana
Status awal	alur kerja atau prosedur dimulai
	Gambaran visual tentang aktivitas atau
	tugas yang terlibat dalam suatu proses
	sistem, membantu memahami langkah-
	langkah yang terlibat dalam jalannya
Aktivitas	suatu aktivitas, biasanya diawali
	dengan kata kerja
^	Memvisualisasikan cabang keputusan
	dalam suatu proses atau aktivitas yang
	melibatkan variasi jalur yang mungkin
Percabangan/Decision	diambil oleh sistem
	Menunjukkan tahap di mana hasil dari
	beberapa aktivitas yang berbeda
Penggabungan/Join	dikumpulkan dan digabungkan
	kembali menjadi satu jalur tunggal
	Memberikan indikasi visual tentang
	bagaimana alur aktivitas berakhir,
	menunjukkan bahwa sistem telah
Status Akhir	menyelesaikan serangkaian tugas atau
	kegiatan tertentu.
	Representasi visual tentang tanggung
	jawab dan keterlibatan berbagai pihak
Swimlane	atau unit dalam suatu proses.

c) Sequence diagram

Diagram urutan (sequence diagram) adalah representasi visual yang mengilustrasikan tingkah laku objek-objek dalam suatu skenario

use case. Diagram ini menggambarkan rentang waktu kehidupan objek serta pesan-pesan yang dikirimkan dan diterima antar objek, memberikan deskripsi visual tentang interaksi di antara mereka.

Tabel 2.4. Simbol Sequence Diagram

Simbol	Keterangan
Entity class	Representasi sistem yang menjadi dasar untuk merancang basis data
Boundary class	Berperan menangani interaksi antar lingkungan sistem
	Mengelola dan mengkoordinasikan kelas-kelas terhadap objek-objek yang memuat logika eksekusi dalam
Control class	sistem
Recursive	Representasi dari pesan yang dikirimkan dan diterima oleh objek itu sendiri, menunjukkan iterasi atau interaksi yang melibatkan dirinya sendiri dalam suatu proses
Activation	Mewakili durasi aktivasi suatu operasi, menunjukkan periode waktu di mana suatu objek atau kelas terlibat dalam eksekusi operasi tersebut
Life line	Memvisualisasikan komponen dengan menggunakan garis putus yang terhubung langsung dengan objek yang bersangkutan.

d) Class diagram

Diagram kelas adalah representasi visual yang mengilustrasikan struktur suatu sistem dengan tujuan memberikan gambaran tentang entitas dan hubungan-hubungan yang ada di dalamnya (Ahmad et al., 2022b).

Tabel 2.5. Simbol Class Diagram

Simbol	Keterangan
	Objek anak (descendant) memiliki
	perilaku dan struktur data yang sama
	dengan objek yang berada di
Generalization	atasnya, yaitu objek induk
	(ancestor).
	Untuk menghindari keterlibatan
	dengan lebih dari dua objek.
Nary Association	dengan febru dari dua objek.
Class	
0.000	Kumpulan objek yang memiliki
	atribut dan operasi yang serupa
Class	
January	Rangkaian tindakan sistem yang
A	mengarah pada hasil yang dapat
Collaboration	diukur untuk suatu aktor.
	Operasi yang secara efektif
Realization	dilaksanakan oleh suatu objek.
	Hubungan di mana perubahan pada
>	suatu elemen independen akan
Dependency	berdampak pada elemen yang
	bergantung padanya.
	Mengindikasikan hubungan antara
Association	objek satu dengan objek yang lain.

2.3. Sistem Pendukung Keputusan

Menurut (Mahendra et al., 2023), sistem pendukung keputusan adalah sistem yang telah terkomputerisasi yang menggunakan berbagai model untuk mengolah data menjadi informasi yang digunakan oleh perusahaan atau organisasi untuk mendukung pengambilan keputusan. Sistem pendukung keputusan menyatupadukan sumber daya intelektual dari individu dan kapabilitas komputer untuk meningkatkan kualitas dari keputusan yang bermanfaat.

Adapun komponen-komponen yang membentuk satu kesatuan sehingga menjadi suatu sistem yang dapat mendukung keputusan sebagai berikut (Lubis et al., 2022).

- Manajemen data: mengelola data yang relevan di dalam basis data menggunakan perangkat lunak
- 2) Manajemen model: paket perangkat lunak yang menyediakan kemampuan analisis sistem dan manajemen perangkat lunak dengan memasukkan modelmodel finansial, statistik, ilmu manajemen, atau model kuantitatif lainnya.
- 3) User interface: antarmuka pengguna dan sistem dimana pengguna memberikan input-an ke dalam sistem sehingga dapat memproses keputusan.
- 4) Subsistem berbasis pengetahuan: setiap subsistem saling mendukung satu sama lain atau berperan sebagai komponen yang berdiri sendiri.

Terdapat beberapa macam metode yang terkenal untuk membangun model sistem pendukung keputusan seperti WP (Weighted Product), SAW (Simple Additive Weighting), TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution), AHP (Analytic Hierarchy Process), Fuzzy, VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje), Profile Matching, dan lain-lain. Dalam penelitian ini, menggunakan SAW sebagai metode dalam membangun sistem pendukung keputusan karyawan terbaik untuk PT. GlobalNine Indonesia.

Menurut (Darbi & Saleh, 2022), *decision support systems* atau DSS adalah subkategori sistem informasi komputer yang mendukung aktifitas pengambilan keputusan. Terdapat 5 jenis DSS sebagai berikut.

• Document-driven DSS

DSS yang mendukung pengambilan keputusan dengan mencari halaman web dan menemukan dokumen yang sesuai dengan kata kunci atau frasa yang digunakan. Ini menggunakan penyimpanan komputer dan teknologi pemrosesan untuk menarik dan menganalisis dokumen yang menghasilkan saran untuk para pembuat keputusan.

Data-driven DSS

DSS yang mendukung pengambilan keputusan dengan menganalisis rangkaian waktu dan mengembalikan informasi baru dari hasil analisis tersebut. Ini berfokus pada data yang dikumpulkan kemudian dimanipulasi untuk memebuhi kebutuhan para pengambil keputusan (*decision-maker*). Data dapat dari berbagai sumber dengan format yang berbeda-beda.

• Communication-driven DSS

DSS yang mendukung pengambilan keputusan dalam grup. Banyak kolabolator bekerja sama untuk menganalisis permasalahan dan bertugas mengambil keputusan.

• Model-driven DSS

DSS yang membantu pengguna menganalisis keputusan atau memilih pilihan yang tepat. Model yang digunakan dapat menggunakan model akuntansi dan keuangan, model representasi, dan model optimasi. DSS ini menyediakan data dan parameter untuk membantu menganalisis permasalahan.

• *Knowledge-driven* DSS

DSS ini merupakan sistem terkomputerisasi yang berinteraksi dengan manusia dan memiliki keahlian khusus dalam pemecahan masalah berdasarkan fakta dan aturan yang mendukung pengambilan keputusan bidang tertentu.

Pada penelitian ini, dalam pembangunan sistem pendukung keputusan untuk pemilihan karyawan terbaik menggunakan pendekatan *knowledge-driven decision support systems* karena dalam proses pemecahan masalahnya menggunakan fakta atau data yang berasal dari permasalahan PT. GlobalNine Indonesia.

2.4. SAW (Simple Additive Weighting)

Menurut (Marpaung, 2018), metode ini juga disebut metode bobot linear atau metode scoring, adalah salah satu teknik keputusan multi-atribut yang paling populer digunakan. Metode ini mengandalkan perhitungan rata-rata berbobot, di mana setiap atribut diberi nilai bobot tertentu. Dalam sistem pendukung keputusan, SAW menjumlahkan nilai-nilai berbobot ini untuk menentukan alternatif terbaik berdasarkan kriteria yang telah ditetapkan.

Metode *Simple Additive Weighting* (SAW) memiliki beberapa kelebihan dibandingkan metode lain. Pertama, SAW mampu menentukan nilai bobot untuk setiap atribut dan melakukan proses perankingan untuk memilih alternatif terbaik. Penilaian dengan metode ini lebih akurat karena berdasarkan nilai kriteria dari bobot preferensi yang telah ditentukan. Proses penghitungan SAW juga sederhana dan mudah dipahami, sehingga bisa digunakan oleh pengguna tanpa latar belakang teknis. Selain itu, SAW fleksibel dalam penggunaan berbagai atribut dan kriteria, serta mampu menghemat waktu dan biaya dalam pengambilan keputusan. Metode

ini memungkinkan penggunaan bobot yang berbeda untuk setiap atribut, memperjelas pentingnya setiap atribut dalam proses keputusan.

Langkah-langkah penyelesaian Simple Additive Weighting (SAW) adalah sebagai berikut:

1) Menetapkan Kriteria

Tentukan kriteria yang akan digunakan sebagai dasar pengambilan keputusan, yaitu Ci.

2) Menetukan Tingkat Penerapa

Tentukan sejauh mana setiap alternatif memenuhi masing-masing kriteria.

3) Buat Matriks Keputusan

Susun matriks keputusan berdasarkan kriteria yang telah ditetapkan. Selanjutnya, normalisasikan matriks tersebut sesuai dengan tipe atribut (apakah atribut laba/keuntungan atau atribut biaya), sehingga diperoleh matriks ternormalisasi R.

4) Proses Pemilihan

Hasil akhirnya didapatkan melalui proses pemilihan, yaitu dengan menjumlahkan hasil perkalian matriks ternormalisasi R dan bobot vektor. Alternatif terbaik (Ai) dipilih berdasarkan nilai maksimum dari hasil tersebut.

a. Normalisasi Matriks Keputusan

Misalkan ini adalah matriks sebelum normalisasi:

$$egin{array}{cccc} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \\ \end{array}$$

Untuk kriteria manfaat (benefit criteria):

$$R_{ij} = \frac{x_{ij}}{\max(x_{ij})}$$

Untuk kriteria biaya (cost criteria):

$$R_{ij} = \frac{\min(x_{ij})}{x_{ij}}$$

b. Menghitung Skor Total untuk Setiap Alternatif (Nilai Preferensi):

$$V_i = \sum_{j=1}^n R_{ij} \times W_j$$

Di mana:

[www.upnvj.ac.id - www.library.upnvj.ac.id - www.repository.upnvj.ac.id]

- V_i adalah skor total untuk alternatif ke-i.
- W_j adalah bobot dari kriteria ke-j.
- R_{ii} adalah nilai normalisasi dari kriteria ke-j untuk alternatif ke-i.

2.5. Website

Menurut (Kaluarachchi & Wickramasinghe, 2023), laman web adalah elemen dasar dalam sebuah situs web. Struktur laman web ini berupa berkas teks yang ditulis dalam *Hypertext Markup Language* (HTML) kemudian tampilannya diatur menggunakan *Cascading Style Sheets* (CSS). Situs web dapat diakses melalui internet atau jaringan lainnya dengan menggunakan URL (*Uniform Resource Locator*) dan peramban web. Situs web memiliki berbagai tujuan, seperti penggunaan pribadi, *blogging*, perdagangan elektronik, penyediaan informasi, serta penggunaan komunitas oleh organisasi pemerintah dan sejenisnya.

2.5.1. Pengembangan Web

Menurut (Kaluarachchi & Wickramasinghe, 2023), pengembangan web adalah proses pembuatan konten untuk situs web dengan desain dan scripting pada sisi *client/server*, kemudian dilakukan *hosting* agar dapat diakses melalui internet atau jaringan internal sesuai kebutuhan. Dalam pengembangan web terbagi menjadi dua kategori besar yaitu:

a. Front-end

Pengembangan *front-end* atau disebut juga pengembangan sisi klien terdiri atas pembuatan tampilan dan desain *website* merupakan tampilan yang dilihat pengguna dan dapat berinteraksi dengan kontennya. Adapun teknologi yang digunakan adalah HTML, CSS, dan JavaScript.

b. Back-end

Pengembangan *back-end* atau disebut juga pengembangan sisi server yang mengatur alur proses dan logika bisnis dari suatu *website* ketika pengguna berinteraksi dengan situs tersebut. Teknologi yang digunakan seperti bahasa pemrograman PHP.

2.6. Systems Development Life Cycle (SDLC)

Menurut (Broad, 2013), SDLC atau *Systems Development Life Cycle* adalah proses pengembangan sistem atau perangkat lunak dan metodologi yang akan digunakan untuk mengembangkan sistem tersebut. Adapun tahapan-tahapan dalam SDLC yang perlu dipahami sebagai berikut.

• Initiation

Tahapan ini diawali dengan keputusan untuk merancang sistem. Sistem yang diusulkan dievaluasi untuk memastikan bahwa sistem tersebut layak digunakan dan sejalan dengan visi misi perusahaan.

• Development/Acquisition

Tahapan ini mencakup pengembangan dan peninjauan desain arsitektur sistem untuk memastikan bahwa integrasi yang direncanakan telah selesai dan asumsi dalam desain sudah akurat. Keluaran dari tahapan ini adalah dokumen yang berisi tinjauan desain, kinerja, fungsi, dan sistem. Penilaian risiko juga untuk memastikan bahwa sistem tidak menimbulkan risiko yang tidak dapat diterima oleh perusahaan.

• Implementation/Assessment

Pada tahapan ini, sistem berfungsi penuh dan ditempatkan di lingkungan pengujian yang terisolasi dari infrastruktur produksi. mengevaluasi komponen fungsional sistem untuk memastikan bahwa sistem beroperasi sesuai desain dan menyediakan fungsi yang diperlukan pertama.

• Operations/Maintenance

Pada tahapan ini, sistem atau program dapat ditempatkan ke dalam lingkungan produksi dan mulai memproses informasi yang dirancang untuknya. Penting untuk melakukan peninjauan terhadap kesiapan sistem dan mengimplementasikan program untuk mengelola konfigurasi sistem.

Disposal

Pada tahapan ini, berfokus pada pengamanan dan pengelolaan data yang diproses oleh sistem. Keluaran utama dari fase ini adalah dokumentasi penonaktifan sistem, log kontrol konfigurasi, dan log sanitasi dan/atau pemusnahan media.

Dalam perkembangannya, terdapat beberapa model pengembangan perangkat lunak yang sering digunakan seperti Waterfall, Prototype, Spiral, Iterative, Agile, RAD (*Rapid Application Development*), dan lainnya. Dalam penelitian ini, menggunakan RAD sebagai metodologi yang akan digunakan dalam pengembangan sistem pendukung keputusan. Model ini dipilih karena dianggap tepat apabila dilihat berdasarkan waktu pengerjaan yang singkat.

2.6.1. Rapid Application Development (RAD)

[www.upnvj.ac.id - www.library.upnvj.ac.id - www.repository.upnvj.ac.id]

Menurut (Putra & Lolly, 2021), RAD adalah model pengembangan perangkat lunak yang diadaptasi dari model pengembangan waterfall dengan kecepatan tinggi karena proses pengerjannya yang pendek untuk

pengembangan setiap komponennya. Model ini memiliki 3 tahapan pengembangan, yaitu:

Requirement Planning

Pada tahap ini, membahas dan menentukan kebutuhan sistem dengan melibatkan pengguna sehingga tujuan jelas dan mendapatkan spesifikasi sistem sebagai acuan pengembangan sistem.

• Design System

Pada tahap ini, dilakukan proses desain dan penyempurnaan jika ada ketidakcocokan dalam desain antara pengguna dan analis. Dalam mendesain sistem dengan merujuk pada dokumen kebutuhan pengguna yang telah dibuat pada tahap requirement.

• Implementation

Pada tahap ini, sistem sudah dikembangkan dan telah disetujui pengguna dan analis namun perlu dilakukan pengujian untuk memastikan fungsionalitasnya. Pengujian dapat dilakukan dengan menggunakan blackbox testing sebelum diterapkan pada server.

[www.upnvj.ac.id - www.library.upnvj.ac.id - www.repository.upnvj.ac.id]