RANCANG BANGUN CHATBOT BERBASIS NLP PADA RUMAHKINI.COM UNTUK MENINGKATKAN LAYANAN KLIEN PT. RUMAH MASA KINI

Fairuz Elqi Mochammad, . (2024) RANCANG BANGUN CHATBOT BERBASIS NLP PADA RUMAHKINI.COM UNTUK MENINGKATKAN LAYANAN KLIEN PT. RUMAH MASA KINI. Skripsi thesis, Universitas Pembangunan Nasional Veteran Jakarta.

[img] Text
ABSTRAK.pdf

Download (261kB)
[img] Text
AWAL.pdf

Download (865kB)
[img] Text
BAB 1.pdf
Restricted to Repository UPNVJ Only

Download (278kB)
[img] Text
BAB 2.pdf
Restricted to Repository UPNVJ Only

Download (485kB)
[img] Text
BAB 3.pdf
Restricted to Repository UPNVJ Only

Download (468kB)
[img] Text
BAB 4.pdf
Restricted to Repository UPNVJ Only

Download (1MB)
[img] Text
BAB 5.pdf

Download (268kB)
[img] Text
DAFTAR PUSTAKA.pdf

Download (279kB)
[img] Text
RIWAYAT HIDUP.pdf
Restricted to Repository UPNVJ Only

Download (161kB)
[img] Text
LAMPIRAN.pdf
Restricted to Repository UPNVJ Only

Download (1MB)
[img] Text
HASIL PLAGIARISME.pdf
Restricted to Repository staff only

Download (339kB)
[img] Text
ARTIKEL KI.pdf
Restricted to Repository staff only

Download (999kB)

Abstract

In this digital era, maintaining customer service quality and operational efficiency is crucial for companies to remain competitive. This study aims to design and develop a chatbot based on Natural Language Processing (NLP) on mahkini.com to enhance the customer service of PT. Rumah Masa Kini. The development process includes NLP techniques such as kenization, stemming, and bag of words for effective text data preprocessing and analysis. The chatbot is built using a deep learning model with a Feedforward Neural Network (FNN), implemented in a Flask backend, and integrated with a front-end interface based on HTML, CSS, and JavaScript. Testing results show that the model achieved an accuracy of 84%, with a 100% success rate for specified functionalities and 82.86% accuracy in responses. With the design of this chatbot, PT. Rumah Masa Kini can improve the efficiency and effectiveness of customer service by providing quick and accurate responses, while also reducing the workload of the customer service team.

Item Type: Thesis (Skripsi)
Additional Information: [No.Panggil: 2010511104] [Pembimbing 1: Indra Permana Solihin] [Pembimbing 2: Zatin Niqotaini] [Penguji 1: Widya Cholil] [Penguji 2: Muhammad Panji Muslim]
Uncontrolled Keywords: Chatbot, Natural Language Processing, Feedforward Neural Network, Flask, HTML, CSS, JavaScript
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Q Science > QA Mathematics > QA76 Computer software
Divisions: Fakultas Ilmu Komputer > Program Studi Informatika (S1)
Depositing User: FAIRUZ ELQI MOCHAMMAD
Date Deposited: 30 Jul 2024 03:55
Last Modified: 30 Sep 2024 04:06
URI: http://repository.upnvj.ac.id/id/eprint/31696

Actions (login required)

View Item View Item