OPTIMASI LONG SHORT TERM MEMORY DENGAN ADAM MENGGUNAKAN DATA UDARA KOTA DKI JAKARTA

Arvi Arkadia, . (2022) OPTIMASI LONG SHORT TERM MEMORY DENGAN ADAM MENGGUNAKAN DATA UDARA KOTA DKI JAKARTA. Skripsi thesis, Universitas Pembangunan Nasional Veteran Jakarta.

[img] Text
ABSTRAK.pdf

Download (465kB)
[img] Text
AWAL.pdf

Download (19MB)
[img] Text
BAB 1.pdf

Download (26kB)
[img] Text
BAB 2.pdf
Restricted to Repository UPNVJ Only

Download (833kB)
[img] Text
BAB 3.pdf
Restricted to Repository UPNVJ Only

Download (474kB)
[img] Text
BAB 4.pdf
Restricted to Repository UPNVJ Only

Download (3MB)
[img] Text
BAB 5.pdf

Download (12kB)
[img] Text
DAFTAR PUSTAKA.pdf

Download (134kB)
[img] Text
RIWAYAT HIDUP.pdf
Restricted to Repository UPNVJ Only

Download (210kB)
[img] Text
LAMPIRAN.pdf
Restricted to Repository UPNVJ Only

Download (38MB)
[img] Text
HASIL PLAGIARISME.pdf
Restricted to Repository staff only

Download (17MB)
[img] Text
ARTIKEL KI.pdf
Restricted to Repository staff only

Download (604kB)

Abstract

Air is an important element for human life in the process of breathing. Economic growth and urbanization that occur in large urban areas have the potential to increase the use of electricity, water, and petroleum energy. This results in air pollution which causes poor air quality in big city areas such as Jakarta. In Indonesia, five parameters are used as pollutants that cause air pollution, these pollutants include Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Dust Particles (PM10), Ozone (O3), and Carbon Monoxide (CO). These five pollutant substances become benchmarks for determining the air level in the Air Pollution Standard Index (ISPU). The Long Short Term Memory method is used in this study as a model used in processing time series data. The LSTM model is used for prediction of air quality with minimum computational error. The use of the LSTM model by using the Adam Optimizer to optimize the value of each layer to produce accurate predictions. Prediction results with MAPE accuracy on PM10 parameter is 4,37%, SO2 parameter is 5,02%, CO parameter is 18,50%, O3 parameter is 5,23%, and NO2 parameter is 37,28%.

Item Type: Thesis (Skripsi)
Additional Information: [No.Panggil: 1810511081] [Pembimbing 1 : Bayu Hananto] [Pembimbing 2 : Desta Sandya Prasvita] [Penguji 1: Henki Bayu Seta] [Penguji 2: Jayanta]
Uncontrolled Keywords: Air Pollution, ISPU, LSTM, Adam
Subjects: Q Science > Q Science (General)
Q Science > QA Mathematics
Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Q Science > QA Mathematics > QA76 Computer software
Divisions: Fakultas Ilmu Komputer > Program Studi Informatika (S1)
Depositing User: Arvi Arkadia
Date Deposited: 26 Jul 2022 07:05
Last Modified: 26 Jul 2022 07:05
URI: http://repository.upnvj.ac.id/id/eprint/19556

Actions (login required)

View Item View Item